PKA-mediated phosphorylation and inhibition of Na(+)-K(+)-ATPase in response to beta-adrenergic hormone

Author:

Cheng X. J.1,Fisone G.1,Aizman O.1,Aizman R.1,Levenson R.1,Greengard P.1,Aperia A.1

Affiliation:

1. Department of Woman and Child Health, St. Goran's Children's Hospital,Karolinska Institute, Stockholm, Sweden.

Abstract

The activity of Na(+)-K(+)-ATPase can be regulated by hormones that activate adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA). Here, using a site-directed phosphorylation state-specific antibody, we show that hormonal regulation of Na(+)-K(+)-ATPase can occur via phosphorylation of Ser-943 on its alpha-subunit. cDNAs coding for wild-type rat Na(+)-K(+)-ATPase and Na(+)-K(+)-ATPase in which the PKA phosphorylation site Ser-943 was mutated to Ala were stably and transiently transfected into COS cells. In COS cells expressing wild-type Na(+)-K(+)-ATPase the beta-adrenergic agonist isoproterenol (1 microM) significantly increased the level of phosphorylation of the alpha-subunit. Phosphorylation was accompanied by a significant inhibition of the enzyme activity, as reflected by a decrease in ATP hydrolysis and 86Rb+ transport. The effect of isoproterenol was reproduced by the PKA activator forskolin used in combination with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine and was abolished by the specific PKA inhibitor H-89. Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, enhanced phosphorylation and inhibition of Na(+)-K(+)-ATPase induced by isoproterenol. The changes in activity of Na(+)-K(+)-ATPase linearly correlated with the extent of the alpha-subunit of Na(+)-K(+)-ATPase being phosphorylated. When Ser-943 was replaced by alanine, stimulation of the phosphorylation and inhibition of the activity of Na(+)-K(+)-ATPase induced by isoproterenol, alone or in combination with okadaic acid, were not observed. These results indicate that, in intact cells, modulation of the activity of Na(+)-K(+)-ATPase can be achieved by regulation of the state of phosphorylation of Ser-943. Moreover, they provide a biochemical mechanism by which beta-adrenergic agonists can regulate Na(+)-K(+)-ATPase activity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3