Retinoids regulate tight junctional resistance of cultured human cervical cells

Author:

Gorodeski George I.12,Eckert Richard L.12,Pal Dipika1,Utian Wulf H.1,Rorke Ellen A.3

Affiliation:

1. Departments of Reproductive Biology,

2. Physiology and Biophysics, and

3. Environmental Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106

Abstract

The objective of the study was to determine the effect of retinoids on paracellular resistance across the cervical epithelium and the mechanisms involved. The experimental model was cultures of human CaSki cells on filters, which retain phenotypic characteristics of the endocervical epithelium. End points for paracellular resistance were measurements of transepithelial electrical resistance and fluxes of pyranine (a trisulfonic acid that traverses the epithelium via the intercellular space). Paracellular resistance was significantly increased in cells grown in retinoid-free medium; the effect could be blocked and reversed with all- trans-retinoic acid (tRA) and with agonists of RAR and RXR receptors but only partially with retinol. The effect of tRA was dose dependent and saturable, with a 50% effective concentration of 0.8 nM. The increases in paracellular resistance induced by vitamin A deficiency required longer incubation in retinoid-free medium than decreases in resistance induced by retinoic acid. tRA had only a minimal effect on paracellular resistance in cells maintained in regular medium. Retinoid-free medium increased and tRA decreased the relative cation mobility across CaSki cultures. Also the effects of tRA were nonadditive to those of cytochalasin D (which decreases tight junctional resistance) and additive to those of ionomycin (which decreases the resistance of the lateral intercellular space), suggesting that tRA modulates tight junctional resistance. It is concluded that vitamin A determines the degree of paracellular resistance across cervical cells by a mechanism that involves modulation of tight junctional resistance.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3