Regulation of mitogenesis by kinins in arterial smooth muscle cells

Author:

Dixon B. S.1,Dennis M. J.1

Affiliation:

1. Veterans Affairs Medical Center, Iowa City, Iowa, USA.

Abstract

Recent evidence suggests that bradykinin (BK) plays a role in regulating neointimal formation after vascular injury. The present study examined the mechanism whereby BK regulates platelet-derived growth factor (PDGF) AB-induced mitogenesis in smooth muscle cells from rat mesenteric artery. BK, but not other activators of phosphoinositidase C (e.g., angiotensin II), inhibited PDGF-stimulated mitogenesis. The B1 receptor agonist des-Arg9-BK (DABK) was more potent than the B2 agonist BK; smaller BK fragments had no activity. In studies in which the B2 receptor antagonist HOE-140 inverted question markD-Arg0[Hyp3,beta-(2-thienyl)-Ala5,D-Tic7,Oic 8]BK inverted question mark and the B1 receptor antagonist DHOE [[D-Arg0,Hyp3,beta-(2-thienyl)-Ala5,D-Tic7,Oi c8,des-Arg9]BK] were used, both receptors independently mediated inhibition of PDGF-induced mitogenesis. There was no evidence for metabolism of BK to DABK. The rank potency for activating phosphoinositidase C and increasing intracellular Ca2+ (BK > DABK) was opposite that for inhibiting mitogenesis (DABK > BK). Inhibition of cyclooxygenase did not prevent the kinin-mediated inhibition. Kinetic analysis of the cell cycle effects of kinins on PDGF-stimulated mitogenesis revealed that continuous exposure to DABK or BK was inhibitory even when added shortly before the cells initiated DNA synthesis (S phase). However, short-term exposure (5-60 min) to DABK or BK was inhibitory only when added after exposure to PDGF. These data suggest that the B1 and B2 receptors potently inhibited PDGF-stimulated mitogenesis and proliferation by activating an alternative signal transduction cascade not involving phosphoinositidase C or prostaglandins. The inhibition occurred at a point late in progression of the cell cycle from G1 to S and was dependent on the presence of kinins after exposure to PDGF.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3