Minimal model of beta-cell mitochondrial Ca2+ handling

Author:

Magnus G.1,Keizer J.1

Affiliation:

1. Institute of Theoretical Dynamics, University of California, Davis 95616, USA.

Abstract

We develop a simplified, but useful, mathematical model to describe Ca2+ handling by mitochondria in the pancreatic beta-cell. The model includes the following six transport mechanisms in the inner mitochondrial membrane: proton pumping via respiration and proton uptake by way of the F1Fzero-ATPase (adapted from D. Pietrobon and S. Caplan. Biochemistry 24: 5764-5778, 1985), a proton leak, adenine nucleotide exchange, the Ca2+ uniporter, and Na+/Ca2+ exchange. Each mechanism is developed separately into a kinetic model for the rate of transport, with parameters taken from experiments on isolated mitochondrial preparations. These mechanisms are combined in a modular fashion first to describe state 4 (nonphosphorylating) and state 3 (phosphorylating) mitochondria with mitochondrial NADH and Ca2+ concentrations as fixed parameters and then to describe Ca2+ handling with variable mitochondrial Ca2+ concentration. Simulations are compared to experimental measurements and agree well with the threshold for Ca2+ uptake, measured mitochondrial Ca2+ levels, and the influence of Ca2+ on oxygen uptake. In the absence of Ca2+ activation of mitochondrial dehydrogenases, the simulations predict a significant reduction in the rate of production of ATP that involves a “short circuit” via Ca2+ uptake through the uniporter. This effect suggests a potential role for mitochondrial Ca2+ handling in determining the ATP-ADP ratio in the pancreatic beta-cell.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 172 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bacterial Electrophysiology;Annual Review of Biophysics;2024-07-16

2. Systems-level computational modeling in ischemic stroke: from cells to patients;Frontiers in Physiology;2024-07-02

3. Calcium oscillations optimize the energetic efficiency of mitochondrial metabolism;iScience;2024-03

4. Systems Biology Approach in Understanding Mitochondrial Disease;Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases;2024

5. Mitochondrial morphology governs ATP production rate;Journal of General Physiology;2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3