Bradykinin-stimulated arachidonic acid release from MDCK cells is not protein kinase C dependent

Author:

Kennedy Chris R. J.1,Hébert Richard L.1,Do Minh T.1,Proulx Pierre R.1

Affiliation:

1. Departments of Biochemistry, Physiology, and Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5

Abstract

Bradykinin (BK)-induced release of arachidonic acid (AA) from Madin-Darby canine kidney (MDCK) D1 cells was investigated. Phorbol 12-myristate 13-acetate (PMA) caused a synergistic increase in BK- and A-23187-induced release of AA but alone had no effect on this release. Inhibition of protein kinase C (PKC) with bisindolmaleimide I (BIS) abolished the synergistic effects of PMA but did not affect AA release caused by BK or A-23187 alone. Downregulation of PKC with 100 nM PMA resulted in a reduction of AA release induced by BK or A-23187 addition, which corresponded to a decrease in cytoplasmic phospholipase A2(cPLA2) activity as measured in cell extracts. Although Western blotting revealed no differences in cPLA2 expression as a result of PMA treatment, phosphorylation of the enzyme, as assessed by phosphoserine content, was significantly reduced in PKC-depleted cells. These results imply that, with PKC downregulation, subsequent BK stimulation results in a Ca2+-dependent translocation of a less phosphorylated, less active form of cPLA2. Any stimulation of PKC by BK addition did not appear as a significant event in onset reponses leading to AA release. On the other hand, inhibition of the mitogen-activated protein kinase (MAPK) cascade with the MAPK kinase inhibitor, PD-98059, significantly decreased BK-induced release of AA, a finding that, with our other results, points to the existence of a PKC-independent route for stimulation of MAPK and the propagation of onset responses.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3