Stage-specific expression of P2Y receptors, ecto-apyrase, and ecto-5'-nucleotidase in myeloid leukocytes

Author:

Clifford E. E.1,Martin K. A.1,Dalal P.1,Thomas R.1,Dubyak G. R.1

Affiliation:

1. Department of Physiology and Biophysics, School of Medicine, CaseWestern Reserve University, Cleveland, Ohio 44106-4970, USA.

Abstract

The expression of P2 purinergic receptor subtypes in leukocytes varies with both lineage and developmental stage. Given the recent identification and cloning of at least seven distinct G protein-coupled ATP receptor subtypes (P2Y family), we investigated P2Y receptor subtype expression during myeloid cell differentiation. We observed that KG-1 myeloblasts express P2Y1 but not P2Y2 receptors (previously termed P2U receptors), whereas later myeloid progenitors, including HL-60 promyelocytes and THP-1 monocytes, expressed P2Y2 but not P2Y1 receptors. In KG-1 cells, significant activation of Ca2+ mobilization by P2Y1 receptors was only observed after preincubation with potato apyrase, an exogenous ATPase. This indicated that P2Y1 receptors are desensitized in KG-1 cells by autocrine mechanisms that may involve enhanced release of endogenous nucleotides and/or decreased expression of cell-surface ecto-nucleotidases. We compared the levels of ecto-apyrase activity and expression in KG-1 myeloblasts and HL-60 promyelocytes. Extracellular ATP was rapidly metabolized by HL-60 but not by KG-1 cells. Reverse transcription-polymerase chain reaction analysis indicated that mRNA for CD39 (cluster of differentiation), an identified ecto-apyrase, was present in HL-60 but not KG-1 cells. Ecto-apyrase activity was modestly increased with differentiation of myeloid progenitors with either phorbol 12-myristate 13-acetate (PMA) or dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP). Differentiation of HL-60 cells with PMA, but not DBcAMP, strongly induced ecto-5'-nucleotidase activity and CD73 mRNA expression. These observations indicate that signal transduction by extracellular ATP in myeloid leukocytes can be regulated by developmentally programmed changes in the expression of P2Y receptor subtypes and multiple ecto-nucleotidases.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3