Mechanisms of inhibition of insulin release

Author:

Sharp G. W.1

Affiliation:

1. Department of Pharmacology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.

Abstract

Several agonists including norepinephrine, somatostatin, galanin, and prostaglandins inhibit insulin releasse. The inhibition is sensitive to pertussis toxin, indicating the involvement of heterotrimeric Gi and/or Go proteins. Receptors for the different agonists have different selectivity for these G proteins. After G protein activation, the alpha- and beta gamma-subunits dissociate and interact with multiple targets to inhibit release. These include 1) the ATP-sensitive K+ channel and perhaps other K+ channels, 2) L-type voltage-dependent Ca2+ channels, 3) adenylyl cyclase, and 4) a “distal” site late in stimulus-secretion coupling. The latter effect, which may be exerted close to the final stage of exocytosis, is the most powerful of the individual inhibitory mechanisms. G protein action on the target molecules is determined by the individual G proteins activated and their specificity for the targets. The L-type Ca2+ channel is inhibited by G(o)-1. Adenylyl cyclase is inhibited by Gi-2 and Gi-3. The distal inhibition can be exerted by Gi-1, Gi-2, Gi-3, and G(o)-2. Thus there is both selectivity and promiscuity in G protein action in the beta-cell. These characteristics allow an inhibitory ligand to be effective at multiple targets and to act differentially from other inhibitory ligands.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3