Amino-terminal processing of the catalytic subunit from Na(+)-K(+)-ATPase

Author:

Pressley T. A.1,Allen J. C.1,Clarke C. H.1,Odebunmi T.1,Higham S. C.1

Affiliation:

1. Department of Physiology, Texas Tech University Health Sciences Center, Lubbock 79430, USA.

Abstract

The first five amino acids of the catalytic alpha 1-subunit predicted from its cDNA are not found in purified mammalian Na(+)-K(+)-ATPase, suggesting co- or posttranslational cleavage. To facilitate evaluation of amino-terminal structure and the cleavage process, we developed a site-directed antibody (anti-VGR) specific for the first nine residues of nascent alpha 1 from rat. In immunoblots of polypeptides generated by in vitro translation, anti-VGR detected a prominent band with a mobility appropriate for the alpha 1-subunit (100 kDa). Immunoblots of total protein from various rat organs, however, revealed no significant binding, implying that virtually all the alpha 1-subunit expressed in vivo was modified. We also assessed amino-terminal structure in various heterologous expression systems. Binding of anti-VGR was observed in Escherichia coli transformed with a vector containing an alpha 1/troponin fusion protein and in insect cells infected with baculovirus containing full-length alpha 1 or alpha 1T. This suggests that modification of the introduced alpha 1 in these expression systems was absent or different from that in mammals. In contrast, green monkey kidney cells (COS-1) transfected with alpha 1 did not reveal significant binding of the antibody, indicating that the introduced isoform was processed appropriately. These results demonstrate that the structure of the alpha 1-subunit's amino terminus differs among various expression systems. The results further imply that efficient co- or posttranslational processing of nascent alpha 1 is conserved among various organs within the rat, yet the required modification enzymes are not present in distant phyla.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3