Iloprost activates KCa channels of vascular smooth muscle cells: role of cAMP-dependent protein kinase

Author:

Schubert R.1,Serebryakov V. N.1,Engel H.1,Hopp H. H.1

Affiliation:

1. Institute of Physiology, University of Rostock, Germany.

Abstract

The patch-clamp technique was used to investigate the effect of iloprost on activity of calcium-activated potassium (KCa) channels of freshly isolated rat tail artery smooth muscle cells. In the whole cell configuration, outward current, determined largely by KCa channels, was enhanced 1.73 +/- 0.11-fold by 5 x 10(-7) M iloprost, 1.80 +/- 0.12-fold by 10(-4) M 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3', 5'-cyclic monophosphothioate (Sp-5,6-DCl-cBIMPS), a specific activator of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA), and 2.78 +/- 0.95-fold by 10 U/ml of the catalytic subunit of PKA + 10(-4) M MgATP, whereas the heat-inactivated catalytic subunit of PKA + MgATP was without effect. Iloprost at 5 x 10(-7) M increased this current 1.70 +/- 0.27-fold after pretreatment of cells with 10(-6) M okadaic acid, a specific phosphatase inhibitor, but did not alter this current after pretreatment of cells with 2 x 10(-4) M Rp-8-(4-chlorophenylthio)-adenosine-3',5'-cyclic monophosphorothioate, a specific PKA inhibitor. In the cell-attached configuration, activity of KCa channels was enhanced 2.48 +/- 0.44-fold by 5 x 10(-7) M iloprost and 2.09 +/- 0.07-fold by 10(-4) M Sp-5,6-DCl-cBIMPS. Iloprost at 5 x 10(-7) M did not alter intracellular calcium concentration in these cells measured using indo 1. In the inside-out configuration, activity of KCa channels was increased 87.12 +/- 45.04-fold by 10 U/ml of the catalytic subunit of PKA together with 10(-4) M MgATP, whereas no effect was observed after application of the catalytic subunit of PKA together with its regulatory subunit and MgATP, MgATP, cAMP, or the catalytic subunit of PKA alone also did not change KCa channel activity. Thus these results show that iloprost is able to activate KCa channels of freshly isolated rat tail artery smooth muscle cells and suggest that this effect is mediated by a PKA-induced phosphorylation of the channel.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3