Affiliation:
1. Endocrine Unit, Massachusetts General Hospital, Boston 02114, USA.
Abstract
Parathyroid hormone (PTH) activates both adenylate cyclase and phospholipase C in target cells, and cloned PTH/PTH-related protein (PTHrP) receptor can mediate both responses when expressed in host cells such as LLC-PK1 renal epithelial cells. Because calcitonin (CT) is known to augment 70-kDa heat shock protein (HSP70) mRNA by an adenosine 3',5'-cyclic monophosphate (cAMP)-independent mechanism in LLC-PK1 cells, we examined regulation of HSP70 transcription by PTH in these cells. Like CT, human PTH-(1-34) [hPTH-(1-34); 10(-10) to 10(-7) M)] increased porcine HSP70 mRNA and human HSP70 promoter-chloramphenicol acetyltransferase (CAT) expression within 4 h in LLC-PK1 cells that stably express > or = 100,000 PTH/PTHrP receptors per cell. The effect of PTH on HSP70 mRNA was not mimicked by cAMP analogues, forskolin, phorbol esters, Ca2+ ionophores, or alpha-thrombin; was insensitive to pertussis toxin; and was not due to increased mRNA stability. The upregulation of HSP70 gene transcription by hPTH (and CT) was clearly observed even after deletion of the functional heat shock consensus element in the promoter region of the human HSP70/CAT reporter. Upregulation of HSP70 transcription via endogenous PTH receptors also was observed in the osteoblastic cell lines SaOS-2 and ROS 17/2.8. Regulation of HSP70 gene transcription by PTH may be a common cellular response to the hormone, which, in some cells, may not be mediated by activation of adenylate cyclase or protein kinase C.
Publisher
American Physiological Society
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献