Functional analysis of a genetic defect of copper transport (Menkes disease) in different cell lines

Author:

Qian Y.1,Tiffany-Castiglioni E.1,Harris E. D.1

Affiliation:

1. Department of Biochemistry, Texas A&M University, College Station 77843, USA.

Abstract

To define the function of the Cu-transporting ATPase in Menkes disease, Menkes and normal fibroblasts were incubated with 67Cu before and after brief exposure to -SH reagents, p-chloromercuribenzoate (PCMB) and dithiothreitol (DTT). Accumulation and retention were compared among these cells, BeWo cells, and rat C6 glioma cells similarly treated. The Michaelis constant for influx of 67Cu into normal and Menkes fibroblasts was practically the same (0.21 +/- 0.07 vs. 0.24 +/- 0.06 microM). The PCMB treatment stimulated 67Cu accumulation in C6 cells, inhibited accumulation in normal and Menkes fibroblasts, and did not affect BeWo cells. DTT stimulated 67Cu uptake in all cells but BeWo cells. DTT treatment after PCMB further enhanced 67Cu accumulation in normal fibroblasts and C6 cells but had no enhancing effect on Menkes fibroblasts or BeWo cells. Menkes fibroblasts and BeWo cells released 67Cu at rates considerably slower than normal fibroblasts (0.06 and 0.09 vs. 0.22%/min, respectively). The PCMB blocked 67Cu release from normal fibroblasts but did not affect Menkes fibroblasts or BeWo cells. Reverse transcription-polymerase chain reaction analysis of total RNA from BeWo cells failed to show a predicted 943-base pair fragment representing a partial transcript of the Menkes factor. The fragment was present in extracts from normal fibroblasts. We conclude that the mechanism underlying Cu homeostasis varies among different cell types. As exemplified by BeWo and Menkes cells, failure to efflux Cu ions may be linked with the failure to express a functional Cu-transporting ATPase, namely, the Menkes protein.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3