Increased contractile activity decreases RNA-protein interaction in the 3'-UTR of cytochrome c mRNA

Author:

Yan Z.1,Salmons S.1,Dang Y. I.1,Hamilton M. T.1,Booth F. W.1

Affiliation:

1. Department of Integrative Biology, University of Texas Medical School,Houston 77225, USA.

Abstract

This study was designed to gain an insight into mechanisms by which cytochrome c gene expression is enhanced by increased contractile activity in skeletal muscle. When rat tibialis anterior muscles were stimulated (10 Hz, 0.25 ms) for 0, 2, 6, 12, or 24 h or 2, 5, 9, or 13 days (n = 4 for each time point), cytochrome c protein (enzyme-linked immunosorbent assay) and mRNA (Northern blot analysis) concentrations started to increase by 9 days, and this was associated with concurrent decreases in cytochrome c mRNA-protein interaction (RNA gel mobility shift assay). We found that the decreased RNA-protein interaction in the stimulated muscle extract was restored by ultracentrifugation (150,000 g, 1 h) in the supernatant fraction. The 150,000 g pellet fraction of stimulated muscle was capable of inhibiting the RNA-protein interaction in control tibialis anterior muscles. These results provide evidence of an inhibitory factor that is responsible for decreasing RNA-protein interaction in the 3'-untranslated region of cytochrome c mRNA in continuously stimulated muscle.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exercise training increases the expression and nuclear localization of mRNA destabilizing proteins in skeletal muscle;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2013-10-01

2. mRNA stability as a function of striated muscle oxidative capacity;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2012-08-15

3. Modulation of utrophin A mRNA stability in fast versus slow muscles via an AU-rich element and calcineurin signaling;Nucleic Acids Research;2007-11-21

4. Muscle transcriptome adaptations with mild eccentric ergometer exercise;Pflügers Archiv - European Journal of Physiology;2007-08-16

5. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli;Journal of Experimental Biology;2006-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3