Carbonic anhydrase and cardiac pH regulation

Author:

Vandenberg J. I.1,Carter N. D.1,Bethell H. W.1,Nogradi A.1,Ridderstrale Y.1,Metcalfe J. C.1,Grace A. A.1

Affiliation:

1. Department of Biochemistry, University of Cambridge, United Kingdom.

Abstract

Membrane-bound carbonic anhydrase (CA) has recently been identified in mammalian cardiac tissue. In this study, we have investigated the histochemical location and functional role of CA in the ferret heart. Heart sections stained by a modified Hansson's technique showed CA to be located on capillary endothelial membranes as well as on sarcolemmal membranes. In the Langendorff-perfused heart, washout of CO2 brought about by switching perfusion between 25 mM HCO3(-)-5% CO2-buffered solution and nominally HCO3(-)-CO2-free solution caused a transient rise in intracellular pH (pHi) measured by the chemical shift of 2-deoxy-D-glucose 6-phosphate with 31P nuclear magnetic resonance spectroscopy. The initial rate of change of pHi, measured over the first 60-75 s of CO2 efflux, was significantly reduced from 0.41 +/- 0.03 pH units/min (n = 9) in control hearts to 0.28 +/- 0.02 pH units/min (n = 5) in the presence of the membrane-permeable CA inhibitor 6-ethoxzolamide (P < 0.05 compared with control) and to 0.22 +/- 0.04 pH units/min (n = 5) in the presence of the membrane-impermeable CA inhibitor CL-11,366 (P < 0.01 compared with control). After reperfusion of the ischemic myocardium, both CA inhibitors caused a significant slowing of initial rate of change in pH (and initial rate of recovery of contractile function) compared with control hearts. These results suggest that CA, by facilitating the hydration-dehydration of CO2-H2CO3, alters the relative concentrations of CO2 inside and outside the cells, thus enhancing the rate of CO2 transfer from the intracellular to extracellular compartments, which contributes significantly to pHi recovery after reperfusion of the ischemic myocardium.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3