Protein phosphatases independently regulate vesicle movement and microtubule subpopulations in hepatocytes

Author:

Hamm-Alvarez S. F.1,Wei X.1,Berndt N.1,Runnegar M.1

Affiliation:

1. University of Southern California Center for Liver Diseases, Los Angeles, USA.

Abstract

To investigate the regulation of microtubule (MT)-based vesicle transport and the interphase MT array in hepatocytes, we have used okadaic acid (OKA) and microcystin (MCYST), two toxins that inhibit serine-threonine protein phosphatases (PP) 1 and 2A, to alter cellular phosphorylation. Video-enhanced differential interference contrast microscopy analysis revealed that both toxins inhibited the frequency, velocity, and run length of MT-dependent vesicle movements dose dependently between 50 and 500 nM. At our maximum dose of 500 nM, both toxins significantly decreased PP2A activity (OKA to 45 +/- 12% and MCYST to 57 +/- 2%), whereas PP1 was inhibited only by MCYST. Because no additional effects on vesicle movements were caused by MCYST over the changes caused by OKA, these data implicate PP2A in the regulation of MT-dependent vesicle movement. To understand whether the changes in parameters of vesicle movements were due to changes in the MT array, the effects of these toxins on MT distribution were examined by immunofluorescence microscopy. Although lower doses of OKA produced no effects, treatment with 500 nM OKA altered MT organization and also caused fragmentation and loss of acetylated (stable) MTs. In contrast, MCYST concentrations up to 500 nM elicited no changes in MT organization in general or in the acetylated (stable) array. From these findings we conclude that inhibition of MT-dependent vesicle movement by the PP inhibitors, MCYST and OKA, in hepatocytes cannot result from changes or disruption in the MT array. Because OKA (an inhibitor of PP2A only in our system) at high doses caused loss of stable MTs, whereas MCYST (an inhibitor of both PP1 and PP2A) did not, we conclude that the control of the preservation of the stable MT array in hepatocytes is complex. Stable MTs require active PP2A for maintenance, but the disruption of the array through inhibition of PP2A can be prevented if PP1 is also inhibited, suggesting that the relative degree of phosphorylation of multiple cellular components is the determinant of MT stability.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3