Dual regulation of PLA2 and PGI2 production by G proteins in bovine aortic endothelial cells

Author:

Rosenstock M.1,Danon A.1,Rimon G.1

Affiliation:

1. Department of Clinical Pharmacology, Corob Center for Health Sciences,Ben-Gurion University, Beer-Sheva, Israel.

Abstract

NaF, a nonselective activator of heterotrimeric guanine nucleotide-binding proteins (G proteins), increased the release of arachidonic acid (AA) and prostacyclin (PGI2) production in bovine aortic endothelial cells (BAEC) at low concentrations (40-60 mM). On the other hand, higher concentrations (100 mM) inhibited phospholipase A2 (PLA2) compared with the basal activity. Intracellular Ca2+ levels did not rise after treatment with stimulatory concentrations of NaF, and, moreover, neither neomycin nor Ca(2+)-free medium affected the biphasic pattern of PGI2 synthesis in response to NaF. CGP-43187, an inhibitor of the 14-kDa secretory PLA2, did not affect NaF-induced AA release. However, AACOCF3, a specific inhibitor of the cytosolic 85-kDa PLA2 (cPLA2), abrogated AA release and PGI2 production in response to 60 mM NaF. A biphasic pattern of PGI2 production was also obtained with the guanosine 5'-triphosphate analogues guanosine 5'-O-(3-thiotriphosphate) and guanylylimidodiphosphate in permeabilized BAEC. Pretreatment of the cells with guanosine 5'-O-(2-thiodiphosphate) suppressed the inhibition and the stimulation of AA release induced by guanylylimidodiphosphate. In addition, phenylisopropyl adenosine inhibited the release of AA and PGI2, whereas ATP and bradykinin increased PGI2. Pertussis toxin not only inhibited ATP- and bradykinin-stimulated PGI2 release, it also reversed the inhibitory effect of phenylisopropyl adenosine, resulting in a significant stimulation. These findings strongly suggest that, in BAEC, cPLA2 is coupled with more than one G protein that are involved in inhibition and stimulation of cPLA2 activity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3