High permeation of L-type Ca2+ channels at physiological [Ca2+]: homogeneity and dependence on the alpha 1-subunit

Author:

Gollasch M.1,Ried C.1,Liebold M.1,Haller H.1,Hofmann F.1,Luft F. C.1

Affiliation:

1. Franz Volhard Clinic, Virchow Klinikum, Humboldt University of Berlin, Germany.

Abstract

Molecular cloning has identified multiple isoforms of dihydropyridine-sensitive C-class L-type Ca2+ channels. We tested the hypotheses that L-type (C-class) channels exhibit homogeneous high permeation properties at physiological Ca2+ concentrations and membrane potentials. We measured unitary currents through single dihydropyridine-sensitive omega-conotoxin-insensitive endocrine and smooth muscle L-type Ca2+ channels in rat pituitary GH3 and rat aortic A7r5 cell lines. We also measured unitary currents through smooth muscle (Cb) Ca2+ channel alpha 1-subunits in Chinese hamster ovary (CHO) cells. Our results show that single channel conductances of all three L-type (C-class) channels are uniform with high Ba2+ concentrations, e.g., approximately 23 pS with 110 mM Ba2+. The single channel conductances were reduced to similar values when the Ba2+ concentration was lowered to near-physiological values: 11.1, 9.3, and 8.4 pS in GH3, A7r5, and CHO cells at 2 mM Ba2+, respectively. The single channel conductances were not significantly different with near-physiological Ca2+ concentrations: 5.5, 5.9, and 4.9 pS in GH3, A7r5, and CHO cells at 2 mM Ca2+, respectively. The data suggest that L-type (C-class) channels are homogeneous in terms of Ca2+ permeation at physiological charge carrier concentrations and membrane potentials. Furthermore, the data indicate that the relatively high Ca2+ permeation under physiological conditions is determined by the intrinsic properties of the pore-forming Ca2+ channel alpha 1-subunit.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Safety Aspects of the Cav1.2 Channel;Methods and Principles in Medicinal Chemistry;2015-06-19

2. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection;BioMed Research International;2014

3. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection;Colloquium Series on Integrated Systems Physiology: From Molecule to Function;2013-09-17

4. Norepinephrine reduces ω-conotoxin-sensitive Ca2+ currents in renal afferent neurons in rats;American Journal of Physiology-Renal Physiology;2012-02-01

5. Lethal Myocardial Reperfusion Injury;Management of Myocardial Reperfusion Injury;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3