Inadequacy of high K+/nigericin for calibrating BCECF. I. Estimating steady-state intracellular pH

Author:

Boyarsky G.1,Hanssen C.1,Clyne L. A.1

Affiliation:

1. Department of Physiology and Biophysics, University of Texas MedicalBranch at Galveston 77550, USA.

Abstract

Intracellular pH (pHi) was measured in single vascular smooth muscle (VSM) cells, cultured from rabbit abdominal aorta, using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) on a microscope-based fluorescence system. Three lines of evidence are presented that using nigericin along with high external K+ to calibrate intracellular BCECF produces systematic errors in pHi. 1) The intrinsic buffering power (beta int), measured using weak bases (e.g., ammonium), was 2.5 times smaller than that measured using weak acids (e.g., propionic acid). This discrepancy became small if pHi had really been approximately 0.2 lower than what was estimated using nigericin-calibrated pHi values. 2) Total cellular buffering power (beta tot) in the presence of CO2/HCO-3 was measured and found to be much smaller than could account for the beta int, together with the contribution of CO2/HCO3 (beta CO2: assumed to be an open system buffer). If the true pHi values were approximately 0.2-0.4 lower than our nigericin-calibrated values, then the sum of beta int and beta CO2 equals beta tot. 3) A null technique was utilized for bracketing steady-state pHi; estimates of steady-state pHi using this null technique were approximately 0.2 lower than the high K+/nigericin-calibrated estimates. Four other cell types were examined: rat hepatocytes, rat corticotrophs, human keratinocytes, and rabbit fibroblasts. These other cells also displayed discrepancies between null and nigericin estimates of steady-state pHi, as well as differences between buffering power assessed using weak bases and acids. Finally, one potential source for these discrepancies is described: selecting an inappropriate external K+ to use with nigericin can produce systematic errors in pHi of approximately 0.1.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3