Recruitment of NADH shuttling in pressure-overloaded and hypertrophic rat hearts

Author:

Lewandowski E. Douglas,O'Donnell J. Michael,Scholz Thomas D.,Sorokina Natalia,Buttrick Peter M.

Abstract

Glucose metabolism in the heart requires oxidation of cytosolic NADH from glycolysis. This study examines shuttling reducing equivalents from the cytosol to the mitochondria via the activity and expression of the oxoglutarate-malate carrier (OMC) in rat hearts subjected to 2 wk (Hyp2, n = 6) and 10 wk (Hyp10, n = 8) of pressure overload hypertrophy vs. that of sham-operated rats (Sham2, n = 6; and Sham10, n = 7). Moderate aortic banding produced increased atrial natriuretic factor (ANF) mRNA expression at 2 and 10 wk, but only at 10 wk did hearts develop compensatory hypertrophy (33% increase, P < 0.05). Isolated hearts were perfused with the short-chain fatty acid [2,4-13C2]butyrate (2 mM) and glucose (5 mM) to enable dynamic-mode13C NMR of intermediate exchange across OMC. OMC flux increased before the development of hypertrophy: Hyp2 = 9.6 ± 2.1 vs. Sham2 = 3.7 ± 1.2 μM·min−1·g dry wt−1, providing an increased contribution of cytosolic NADH to energy synthesis in the mitochondria. With compensatory hypertrophy, OMC flux returned to normal: Hyp10 = 3.9 ± 1.7 vs. Sham10 = 3.8 ± 1.2 μM·g−1·min−1. Despite changes in activity, no differences in OMC expression occurred between Hyp and Sham groups. Elevated OMC flux represented augmented cytosolic NADH shuttling, coupled to increased nonoxidative glycolysis, in response to hypertrophic stimulus. However, development of compensatory hypertrophy moderated the pressure-induced elevation in OMC flux, which returned to control levels. The findings indicate that the challenge of pressure overload increases cytosolic redox state and its contribution to mitochondrial oxidation but that hypertrophy, before decompensation, alleviates this stress response.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3