Author:
Ericson A. C.,Spring K. R.
Abstract
NaCl entry into Necturus maculosus gallbladder epithelial cells was studied by determination of the rate of fluid movement into the cell when the Na+-K+-ATPase was inhibited by 10(-4) M ouabain in the serosal bathing solution. The cell swelling was due to continuing entrance of NaCl into the cell across the apical membrane, which increased the solute content of the cell; the resultant rise in cell osmolality induced water flow and cell swelling. The rate of swelling was 4.3% of the cell volume per minute, equivalent to a volume flow across the apical membrane of 1.44 x 10(-6) cm/s, similar in magnitude to the normal rate of fluid absorption by the gallbladder. We determined the mechanism of NaCl entry by varying the ionic composition of the mucosal bath; when most of the mucosal Na+ or Cl- was replaced, cell volume did not increase during pump inhibition. The rate of NaCl entry was a saturable function of Na+ or Cl- in the mucosal bathing solution with K1/2 values of 26.6 mM for Na+ and 19.5 mM for Cl-. The mode of NaCl entry was probably not the parallel operation of Na+-H+ and Cl(-)-HCO-3 exchangers because of the lack of effect of bicarbonate removal or of the inhibitors amiloride and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. NaCl entry was reversibly inhibited by bumetanide in the mucosal bathing solution. Transepithelial NaCl and water absorption is the result of the coupled, carrier-mediated movement of NaCl into the cell across the apical membrane and the active extrusion of Na+ by the Na+-K+-ATPase in the basolateral membrane.
Publisher
American Physiological Society
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Volume Regulation in Epithelia;Physiology in Health and Disease;2020
2. Volume Regulation in Epithelia;Ion Channels and Transporters of Epithelia in Health and Disease;2015-12-15
3. Interaction between transcellular and paracellular water transport pathways through Aquaporin 5 and the tight junction complex;Proceedings of the National Academy of Sciences;2007-02-21
4. Chloride ATPase pumps in nature: do they exist?;Biological Reviews of the Cambridge Philosophical Society;2003-05
5. General models for water transport across leaky epithelia;International Review of Cytology;2002