Volume regulation by Necturus gallbladder: apical Na+-H+ and Cl(-)-HCO-3 exchange

Author:

Ericson A. C.,Spring K. R.

Abstract

Necturus gallbladder epithelial cells exhibited volume regulatory swelling when exposed to a hypertonic mucosal bathing solution. The initial, osmotically induced shrinkage was followed by a rapid increase in cell volume back to the control value despite continuing hypertonicity of the mucosal perfusate. This volume regulatory increase occurred by osmotic water flow accompanying the transient cellular uptake of NaCl from the mucosal bathing solution. Volume regulatory increase required Na+ and Cl- in the mucosal bath; it was inhibited by amiloride or 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid but not by bumetanide or ouabain. The K1/2 for Na+ was 2.8 mM, the K1/2 for Cl- was 1.9 mM, and maximum velocity of fluid flow into the cell for both ions was greater than 10 x 10(-6) cm/s. Both volume regulatory increase and transepithelial fluid absorption involve NaCl flux across the apical membrane into the cells, but the nature of the NaCl fluxes differ in the two processes. During volume regulatory increase NaCl enters the cells by parallel Na+-H+ and Cl(-)-HCO-3 exchanges, whereas during transepithelial fluid absorption NaCl enters the cell by the coupled flux of NaCl.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Reference11 articles.

1. derivatives. J. 11. KREGENOW, F. M. Osmoregulatory salt transporting mechanisms:

2. Regulation of renal tubule cell volume in hypotonic media

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cell migration dynamics explained by the coupling of mechanics with electrochemistry and pH regulation;Physical Review Research;2024-05-13

2. Hydrogen, Bicarbonate, and Their Associated Exchangers in Cell Volume Regulation;Frontiers in Cell and Developmental Biology;2021-06-24

3. Volume Regulation in Epithelia;Physiology in Health and Disease;2020

4. Water Homeostasis and Cell Volume Maintenance and Regulation;Cell Volume Regulation;2018

5. Volume Regulation in Epithelia;Ion Channels and Transporters of Epithelia in Health and Disease;2015-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3