Autologous mitochondrial transplantation in male mice as a strategy to prevent deleterious effects of peripheral ischemia-reperfusion

Author:

Boutonnet Lauréline1,Mallard Joris2,Charles Anne-Laure3,Hucteau Elyse2,Geny Bernard4,Lejay Anne5,Grandperrin Antoine2

Affiliation:

1. University of Strasbourg, France

2. University of Strasbourg, Strasbourg, France

3. Hôpitaux Universitaire de Strasbourg

4. Physiology, Universite de strasbourg, STRASBOURG CEDEX, FRANCE, France

5. Vascular Surgery and Kidney Transplantation/Physiology, University Hospital of Strasbourg, France, Strasbourg, France

Abstract

Background and objective: Ischemia-reperfusion (IR) is known to induce severe tissue damage, notably through mitochondrial dysfunction. Mitochondrial transplantation has emerged as a promising therapeutic strategy in cardiac IR, however few studies have previously assessed its efficacy in the context of peripheral IR. Therefore, the objective of this study was to assess the effect of mitochondrial transplantation in a hindlimb model of IR injury. Methods: Thirty-six SWISS mice were divided into three groups: control (CTL, n=12), ischemia-reperfusion (IR, n=12) and IR with mitochondrial transplantation (MT, n=12). Ischemia (2 hours) was induced using the tourniquet model, around the right hind limb in IR and MT groups. In MT group, mitochondria isolated from the right rectus muscle, a non-ischemic region, were injected shortly before reperfusion. Mitochondrial respiration, calcium retention capacity and western blotting analysis were performed 2 hours after reperfusion. Results: Compared to CTL group, IR led to a decrease in the mitochondrial respiratory capacity, particularly for the basal state (-30%; p=0.015) and the oxidative phosphorylation (-36%; p=0.024), as well as calcium retention capacity (-45%; p=0.007). Interestingly, mitochondrial transplantation partially restored these functions since no difference between MT and CTL groups were found. Additionally, the administration of healthy mitochondria resulted in a positive regulation of redox balance and mitochondrial dynamics within the skeletal muscle. Conclusion: While further investigations are needed to better characterize underlying mechanisms, mitochondrial transplantation represents a promising strategy in the setting of IR-induced muscular damage.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3