Inhibition of miR-155 potentially protects against lipopolysaccharide-induced acute lung injury through the IRF2BP2-NFAT1 pathway

Author:

Li Hsiao-Fen12,Wu Yueh-Lin345ORCID,Tseng Tzu-Ling6,Chao Shih-Wei7,Lin Heng12,Chen Hsi-Hsien45

Affiliation:

1. Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

2. PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan

3. Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

4. Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

5. Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan

6. Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan

7. Drug Development Center, China Medical University, Taichung, Taiwan

Abstract

Sepsis-induced lung injury is a lethal complication with no effective treatment options, affecting millions of people worldwide. Oroxylin A (OroA) is a natural flavonoid with potent anticancer effects, but its modulating effect on inflammation through microRNAs (miRs) is not apparent. In this report, we investigated the target genes of the miR pathway mediated by OroA and assessed the potential for novel treatments of septic lung injury. An miR array screening and quantitative polymerase chain reaction identified that miR-155-5p could be a candidate regulated by OroA. Bioinformatics analysis indicated that interferon regulatory factor-2-binding protein-2 (IRF2BP2) might be a target of miR-155-5p, and this hypothesis was verified through reporter assays. In addition, an immunoprecipitation assay demonstrated that OroA increased the binding activity of IRF2BP2 to the nuclear factor of activated T-cells 1 (NFAT1), causing inducible nitric oxide synthase to cause an inflammatory reaction. Finally, the direct injection of short hairpin RNA (shRNA)-miR-155-5p into the bone marrow of mice ameliorated LPS-induced acute lung injury and inflammation in mice. Our results provide new mechanistic insights into the role of the OroA-induced miR-155-5p-IRF2BP2-NFAT1 axis in sepsis, demonstrating that direct bone marrow injection of lentivirus containing shRNA-155-5p could prove to be a potential future clinical application in alleviating sepsis-induced acute lung injury.

Funder

Ministry of Science and Technology, Taiwan

Taipei Medical University

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3