Regulation of membrane-associated iPLA2 activity by a novel PKC isoform in ventricular myocytes

Author:

Steer Sarah A.1,Wirsig Karin C.2,Creer Michael H.2,Ford David A.1,McHowat Jane2

Affiliation:

1. Departments of Biochemistry and

2. Pathology, St. Louis University School of Medicine, St. Louis, Missouri 63104

Abstract

Thrombin stimulation of rabbit ventricular myocytes increases membrane-associated, Ca2+-independent phospholipase A2 (iPLA2) activity, resulting in accelerated hydrolysis of membrane plasmalogen phospholipids and increased production of arachidonic acid and lysoplasmenylcholine. This study was designed to investigate the signal transduction pathways involved in activation of membrane-associated iPLA2. Incubation of isolated membrane fractions suspended in Ca2+-free buffer with thrombin or phorbol 12-myristate 13-acetate resulted in a two- to threefold increase in iPLA2 activity. Prior treatment with the PKC inhibitor GF-109203X blocked iPLA2 activation by thrombin. These data suggest that a novel PKC isoform present in the membrane fraction modulates iPLA2 activity. Immunoblot analysis revealed a significant portion of PKC-ε present in the membrane fraction, but no other membrane-associated novel PKC isoform was detected by this method. These data indicate that activation of membrane-associated iPLA2 is mediated by a membrane-associated novel PKC isoform in thrombin-stimulated rabbit ventricular myocytes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3