Halothane modulation of skeletal muscle ryanodine receptors: dependence on Ca2+, Mg2+, and ATP

Author:

Diaz-Sylvester Paula L.,Porta Maura,Copello Julio A.

Abstract

Malignant hyperthermia (MH) susceptibility is a genetic disorder of skeletal muscle associated with mutations in the ryanodine receptor isoform 1 (RyR1) of sarcoplasmic reticulum (SR). In MH-susceptible skeletal fibers, RyR1-mediated Ca2+release is highly sensitive to activation by the volatile anesthetic halothane. Indeed, studies with isolated RyR1 channels (using simple Cs+solutions) found that halothane selectively affects mutated but not wild-type RyR1 function. However, studies in skeletal fibers indicate that halothane can also activate wild-type RyR1-mediated Ca2+release. We hypothesized that endogenous RyR1 agonists (ATP, lumenal Ca2+) may increase RyR1 sensitivity to halothane. Consequently, we studied how these agonists affect halothane action on rabbit skeletal RyR1 reconstituted into planar lipid bilayers. We found that cytosolic ATP is required for halothane-induced activation of the skeletal RyR1. Unlike RyR1, cardiac RyR2 (much less sensitive to ATP) responded to halothane even in the absence of this agonist. ATP-dependent halothane activation of RyR1 was enhanced by cytosolic Ca2+(channel agonist) and counteracted by Mg2+(channel inhibitor). Dantrolene, a muscle relaxant used to treat MH episodes, did not affect RyR1 or RyR2 basal activity and did not interfere with halothane-induced activation. Studies with skeletal SR microsomes confirmed that halothane-induced RyR1-mediated SR Ca2+release is enhanced by high ATP-low Mg2+in the cytosol and by increased SR Ca2+load. Thus, physiological or pathological processes that induce changes in cellular levels of these modulators could affect RyR1 sensitivity to halothane in skeletal fibers, including the outcome of halothane-induced contracture tests used to diagnose MH susceptibility.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3