A proteasome inhibitor reduces concurrent, sequential, and long-term IL-1β- and TNF-α-induced ECAM expression and adhesion

Author:

Dagia Nilesh M.1,Goetz Douglas J.1

Affiliation:

1. Department of Chemical Engineering, Ohio University, Athens, Ohio 45701

Abstract

A promising approach for reducing aberrant leukocyte-endothelial adhesion during pathological inflammation is to inhibit endothelial cell adhesion molecule (ECAM) expression at the transcription level. Several compounds have been shown to decrease cytokine-induced upregulation of ECAMs primarily by modulating the activity of transcription factors [e.g., nuclear factor-κB (NF-κB)]. The majority of the in vitro studies have focused on the effect of transcription inhibitors on endothelial cells exposed to a single cytokine [primarily tumor necrosis factor-α (TNF-α)] for a relatively short period of time (primarily 4-6 h). However, in the in vivo setting, multiple cytokines [e.g., interleukin-1β (IL-1β) and TNF-α] may be present for extended periods of time. Thus we studied the effects of a transcription inhibitor, the proteasome inhibitor lactacystin, on ECAM expression and myeloid (HL60) cell adhesion to human umbilical vein endothelial cells (HUVEC) activated by concurrent, sequential, and long-term (24 h) treatment with IL-1β and TNF-α. We show, for the first time, that lactacystin inhibits 1) 4-h concurrent IL-1β- and TNF-α-induced expression of E-selectin, VCAM-1, ICAM-1, and HL60 cell adhesion to HUVEC; 2) 4-h TNF-α-induced expression of E-selectin, VCAM-1, and HL60 cell adhesion to HUVEC that have become desensitized to IL-1β activation; 3) 24-h TNF-α-induced expression of E-selectin and VCAM-1 but not ICAM-1; and 4) 24-h TNF-α-induced HL60 cell adhesion to HUVEC. Combined, our results demonstrate that a proteasome inhibitor can reduce concurrent, sequential, and long-term IL-1β- and TNF-α-induced ECAM expression and myeloid cell adhesion.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3