Choroid plexus glutathione peroxidases are instrumental in protecting the brain fluid environment from hydroperoxides during postnatal development

Author:

Saudrais Elodie12,Strazielle Nathalie123,Ghersi-Egea Jean-François12

Affiliation:

1. FLUID Team, Lyon Neurosciences Research Center, INSERM U1028 CRNS UMR 5292, Université Claude Bernard Lyon-1, Lyon, France

2. Blood-Brain Interfaces Exploratory Platform BIP, Lyon Neurosciences Research Center, Lyon, France

3. Brain-i, Lyon, France

Abstract

Hydrogen peroxide, released at low physiological concentration, is involved in different cell signaling pathways during brain development. When released at supraphysiological concentrations in brain fluids following an inflammatory, hypoxic, or toxic stress, it can initiate lipid peroxidation, protein, and nucleic acid damage and contribute to long-term neurological impairment associated with perinatal diseases. We found high glutathione peroxidase and glutathione reductase enzymatic activities in both lateral and fourth ventricle choroid plexus tissue isolated from developing rats, in comparison to the cerebral cortex and liver. Consistent with these, a high protein expression of glutathione peroxidases 1 and 4 was observed in choroid plexus epithelial cells, which form the blood-cerebrospinal fluid barrier. Live choroid plexuses isolated from newborn rats were highly efficient in detoxifying H2O2 from mock cerebrospinal fluid, illustrating the capacity of the choroid plexuses to control H2O2 concentration in the ventricular system of the brain. We used a differentiated cellular model of the blood-cerebrospinal fluid barrier coupled to kinetic and inhibition analyses to show that glutathione peroxidases are more potent than catalase to detoxify extracellular H2O2 at concentrations up to 250 µM. The choroidal cells also formed an enzymatic barrier preventing blood-borne hydroperoxides to reach the cerebrospinal fluid. These data point out the choroid plexuses as key structures in the control of hydroperoxide levels in the cerebral fluid environment during development, at a time when the protective glial cell network is still immature. Glutathione peroxidases are the main effectors of this choroidal hydroperoxide inactivation.

Funder

Ministry of higher education, research and inovation

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3