Hydrogen sulfide promotes angiogenesis by downregulating miR-640 via the VEGFR2/mTOR pathway

Author:

Zhou Yu1,Li Xing-Hui1,Zhang Cai-Cai12,Wang Ming-Jie1,Xue Wen-Long1,Wu Dong-Dong1,Ma Fen-Fen3,Li Wen-Wen1,Tao Bei-Bei1,Zhu Yi-Chun1

Affiliation:

1. Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China;

2. Department of Physiology, Hainan Medical College, Haikou, Hainan, China; and

3. Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China

Abstract

We previously found hydrogen sulfide (H2S) to be a new proangiogenic factor. However, the mechanisms underlying the cardiovascular effect of this small gas molecule remain largely unknown. The aim of the present study was to identify the essential microRNAs (miRNAs) involved in the transduction of H2S signals in vascular endothelial cells (ECs). The expression of miR-640 and its signaling elements, vascular endothelial growth factor receptor 2 (VEGFR2), hypoxia inducible factor 1-α (HIF1A), and mammalian target of rapamycin (mTOR), was measured using quantitative PCR and Western blotting. Overexpression and inhibition of miR-640 were performed to clarify their roles in mediating the effect of H2S. In addition, knockdown of VEGFR2, HIF1A, and mTOR was performed using siRNAs, dominant negative mutants, or inhibitors to examine their roles in the transduction of the H2S signals. miR-640 levels decreased in vascular ECs that were treated with H2S, whereas overexpression of miR-640 blunted the proangiogenic effect of H2S. Knockdown of either VEGFR2 or mTOR blunted the downregulation of miR-640 and the proangiogenic effect induced by H2S. In addition, miR-640 bound to the 3′-UTR of HIF1A mRNA and then inhibited the expression of HIF1A. The inhibition could be recovered by treating cells with H2S. Thus we concluded that miR-640 plays a pivotal role in mediating the proangiogenic effect of H2S; H2S acts through downregulation of the expression of miR-640 and increasing the levels of HIF1A through the VEGFR2-mTOR pathway.

Funder

National Natural Science Foundation of China (NSFC)

The ministry of Education of China

Shanghai Pujiang Program

Research center on Aging and Medicine, Fudan University

Key Laboratory program of the Education Commission of Shanghai Mulnicipality

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3