Microvessel formation from mouse aorta is stimulated in vitro by secreted VEGF and extracts from metanephroi

Author:

Akimoto Tetsu1,Hammerman Marc R.1

Affiliation:

1. George M. O'Brien Kidney and Urological Disease Center, Renal Division, Departments of Medicine, Cell Biology, and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

We have demonstrated that during culture under 5% O2, the addition of recombinant human VEGF or FGF2 to mouse embryonic aorta explants (thoracic level to lateral vessels supplying the mesonephros and metanephros) stimulates microvessel formation. Here we show that microvessel formation is also stimulated by addition to explants of supernatants obtained from metanephroi grown in serum-free organ culture or of metanephroi extracts. Supernatants and extracts from metanephroi grown under hypoxic conditions are more stimulatory than supernatants/extracts from metanephroi grown in room air. VEGF and FGF2 can be detected by using immunohistochemistry in developing nephrons in the cultured renal anlagen. Metanephroi supernatants contain more VEGF if renal anlagen are grown under hypoxic conditions than if they are grown in room air. Metanephros supernatant-stimulated microvessel formation is completely inhibited by soluble sFlt-1 fusion protein or anti-VEGF antibodies (αVEGF). Extract-stimulated microvessel formation is inhibited by αVEGF or anti-FGF2 antibodies, or both. We conclude that metanephroi produce growth factors including VEGF and FGF that enhance microvessel formation from embryonic thoracic aorta in vitro.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3