Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells

Author:

Abed Majed12,Towhid Syeda T.1,Mia Sobuj1,Pakladok Tatsiana1,Alesutan Ioana1,Borst Oliver3,Gawaz Meinrad3,Gulbins Erich4,Lang Florian1

Affiliation:

1. Department of Physiology, University of Tuebingen, Tuebingen, Germany;

2. Medicine Faculty, Al-Furat University, Deir Ezzor, Syria;

3. Department of Cardiology and Cardiovascular Medicine, University of Tuebingen, Tuebingen, Germany; and

4. Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany

Abstract

Eryptosis, the suicidal erythrocyte death, leads to cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes adhere to the vascular wall by binding of phosphatidylserine to the CXC chemokine ligand 16 (CXCL16). Stimulators of eryptosis include increased cytosolic Ca2+activity, energy depletion, and activation of ceramide-producing sphingomyelinase. The present study explored whether sphingomyelinase triggers erythrocyte adhesion to endothelial cells. To this end, human erythrocytes were exposed for 6 h to bacterial sphingomyelinase (1–10 mU/ml) and phosphatidylserine exposure was estimated from fluorescent annexin-V-binding, cell volume from forward scatter in FACS-analysis, erythrocyte adhesion to human umbilical vein endothelial cells (HUVEC) from trapping of labeled erythrocytes in a flow chamber under flow conditions at arterial shear rates, and CXCL16 protein abundance utilizing Western blotting and FACS analysis of fluorescent antibody binding. As a result, sphingomyelinase (≥1 mU/ml) triggered cell shrinkage, phosphatidylserine exposure and erythrocyte adhesion to HUVEC, effects blunted by Ca2+removal. Adhesion was significantly blunted by phosphatidylserine-coating annexin-V (5 μl/ml), following addition of neutralizing antibodies against endothelial CXCL16 (4 μg/ml) and following silencing of the CXCL16 gene with small interfering RNA. Pretreatment of HUVEC with sphingomyelinase upregulated CXCL16 protein abundance. Six hours pretreatment of HUVEC with sphingomyelinase (10 mU/ml) or C6-ceramide (50 μM) augmented erythrocyte adhesion following a 30-min treatment with Ca2+ionophore ionomycin (1 μM) or following energy depletion by 48-h glucose removal. Thus exposure to sphingomyelinase or C6-ceramide triggers eryptosis followed by phosphatidylserine- and CXCL16-sensitive adhesion of eryptotic erythrocytes to HUVEC.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3