Regulation of UT-A1-mediated transepithelial urea flux in MDCK cells

Author:

Fröhlich Otto,Klein Janet D.,Smith Pauline M.,Sands Jeff M.,Gunn Robert B.

Abstract

Transepithelial [14C]urea fluxes were measured across cultured Madin-Darby canine kidney (MDCK) cells permanently transfected to express the urea transport protein UT-A1. The urea fluxes were typically increased from a basal rate of 2 to 10 and 25 nmol·cm−2·min−1in the presence of vasopressin and forskolin, respectively. Flux activation consisted of a rapid-onset component of small amplitude that leveled off within ∼10 min and at times even decreased again, followed by a delayed, strong increase over the next 30–40 min. Forskolin activated urea transport through activation of adenylyl cyclase; dideoxyforskolin was inactive. Vasopressin activated urea transport only from the basolateral side and was blocked by OPC-31260, indicating that its action was mediated by basolateral V2receptors. In the presence of the phosphodiesterase inhibitor IBMX, vasopressin activated as strongly as forskolin. By itself, IBMX caused a slow increase over 50 min to ∼5 nmol·cm−2·min−1. 8-Bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP; 300 μM) activated urea flux only when added basolaterally. IBMX augmented the activation by basolateral 8-BrcAMP. Urea flux activation by vasopressin and forskolin were only partially blocked by the protein kinase A inhibitor H-89. Even at concentrations >10 μM, urea flux after 60 min of stimulation was reduced by <50%. The rapid-onset component appeared unaffected by the presence of H-89. These data suggest that activation of transepithelial urea transport across MDCK-UT-A1 cells by forskolin and vasopressin involves cAMP as a second messenger and that it is mediated by one or more signaling pathways separate from and in addition to protein kinase A.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3