Revised immunolocalization of the Na+-d-glucose cotransporter SGLT1 in rat organs with an improved antibody

Author:

Balen Daniela,Ljubojević Marija,Breljak Davorka,Brzica Hrvoje,Z̆lender Vilim,Koepsell Hermann,Sabolić Ivan

Abstract

Previously, we characterized localization of Na+-glucose cotransporter SGLT1 ( Slc5a1) in the rat kidney using a polyclonal antibody against the synthetic COOH-terminal peptide of the rat protein (Sabolić I, Škarica M, Gorboulev V, Ljubojević M, Balen D, Herak-Kramberger CM, Koepsell H. Am J Physiol Renal Physiol 290: 913–926, 2006). However, the antibody gave some false-positive reactions in immunochemical studies. Using a shortened peptide for immunization, we have presently generated an improved, more specific anti-rat SGLT1 antibody (rSGLT1-ab), which in immunochemical studies with isolated membranes and tissue cryosections from male (M) and female (F) rats exhibited 1) in kidneys and small intestine, labeling of a major protein band of ∼75 kDa; 2) in kidneys of adult animals, localization of rSGLT1 to the proximal tubule (PT) brush-border membrane (S1 < S2 < S3) and intracellular organelles (S1 > S2 > S3), with zonal (cortex < outer stripe) and sex differences (M < F) in the protein expression, which correlated well with the tissue expression of its mRNA in RT-PCR studies; 3) in kidneys of castrated adult M rats, upregulation of the protein expression; 4) in kidneys of prepubertal rats, weak and sex-independent labeling of the 75-kDa protein band and immunostaining intensity; 5) in small intestine, sex-independent regional differences in protein abundance (jejunum > duodenum = ileum); and 6) thus far unrecognized localization of the transporter in cortical thick ascending limbs of Henle and macula densa in kidney, bile ducts in liver, enteroendocrine cells and myenteric plexus in the small intestine, and initial ducts in the submandibular gland. Our improved rSGLT1-ab may be used to identify novel sites of SGLT1 localization and thus unravel additional physiological functions of this transporter in rat organs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3