Thin filament regulation of force activation is not essential in single vascular smooth muscle cells

Author:

Brozovich F. V.1,Yamakawa M.1

Affiliation:

1. Bockus Research Institute, Graduate Hospital, Philadelphia,Pennsylvania 19146.

Abstract

To investigate thin filament regulation of force activation in smooth muscle, we recorded force and stiffness of alpha-toxin-permeabilized single smooth muscle cells. At pCa 9, the rigor state was characterized by high in-phase stiffness, low force, and low quadrature stiffness, suggesting that the attachment of rigor cross bridges does not depend on either Ca2+ or myosin light chain (MLC) phosphorylation, and cross bridges can enter a rigor state without producing force. At pCa 4, 20 microM ATP increased force, in-phase stiffness, and quadrature stiffness, while 20 microM CTP did not increase any of these parameters, suggesting that although MLC phosphorylation is not required for the formation of rigor cross bridges, MLC phosphorylation is required for detached cross bridges to attach to actin and undergo a force-producing isomerization. These results also suggest that for smooth muscle, force activation is regulated by myosin light-chain kinase. From rigor, 20 microM ATP (pCa 9) increased force and quadrature without changing in-phase stiffness. This force increase could be explained if in rigor solution both actomyosin (AM) and AM.ADP cross bridges exist (2, 32), and ATP-induced detachment of AM cross bridges is accompanied by AM.ADP cross bridges undergoing a force-producing isomerization in combination with cooperative cross-bridge reattachment (36). Thus results of our experiments suggest that thin filament-based regulation of force activation is not essential in smooth muscle, and a population of cross bridges must begin in an attached state for force to be produced in the absence of MLC phosphorylation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3