Affiliation:
1. Department of Physiology and Biophysics, University of Alabama at Birmingham 35294, USA.
Abstract
We have previously cloned a bovine renal epithelial channel homologue (alpha-bENaC) belonging to the epithelial Na+ channel (ENaC) family. With the use of a rabbit nuclease-treated in vitro translation system, mRNA coding for alpha-bENaC was translated and the polypeptide products were reconstituted into liposomes. On incorporation into planar lipid bilayers, in vitro-translated alpha-bENaC protein 1) displayed voltage-independent Na+ channel activity with a single-channel conductance of 40 pS, 2) was mechanosensitive in that the single-channel open probability was maximally activated with a hydrostatic pressure gradient of 0.26 mmHg across the bilayer, 3) was blocked by low concentrations of amiloride [apparent inhibitory constant of amiloride (K(i)amil approximately 150 nM], and 4) was cation selective with a Li+:Na+:K+ permselectivity of 2:1:0.14 under nonstretched conditions. These pharmacological and selectivity characteristics were altered to a lower amiloride affinity (K(i)amil > 25 microM) and a lack of monovalent cation selectivity in the presence of a hydrostatic pressure gradient. This observation of stretch activation (SA) of alpha-bENaC was confirmed in dual electrode recordings of heterologously expressed alpha-bENaC whole cell currents in Xenopus oocytes swelled by the injection of 15 nl of a 100 mM KCl solution. We conclude that alpha-bENaC, and by analogy other ENaCs, represent a novel family of cloned SA channels.
Publisher
American Physiological Society
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献