Ammonia permeability of erythrocyte membrane studied by 14N and 15N saturation transfer NMR spectroscopy

Author:

Labotka R. J.1,Lundberg P.1,Kuchel P. W.1

Affiliation:

1. Department of Pediatrics, University of Illinois at Chicago 60612.

Abstract

The permeability of biological membranes to the rapidly penetrating compound ammonia is extremely difficult to study due to the lack of readily available radionuclides. 14N and 15N saturation transfer nuclear magnetic resonance (NMR) experiments were used to measure the erythrocyte membrane permeability of ammonia under equilibrium exchange conditions. When 14N spectra from erythrocytes suspended in NH4Cl solution were obtained in the presence of the extracellular shift reagent dysprosium tripolyphosphate, intracellular and extracellular ammonia signals were readily resolved. Comparison with 15N spectra from erythrocyte suspensions containing 15N4Cl revealed that the intracellular [14N]ammonia signals were 100% NMR visible. 14N and 15N saturation transfer NMR experiments showed similar influx rates and permeabilities, indicating no loss of saturation transfer due to quadrupolar relaxation of 14N nuclei upon membrane passage. Ammonia influx was directly proportional to concentration (0.39 +/- 0.012 fmol.cell-1.s-1.mM-1 at pH 7.0) and not saturable, which is consistent with passive diffusion. Apparent ammonia permeability increased with pH over the range of pH 6-8 as the fraction of free NH3 increased. However, diffusion through unstirred layers became increasingly rate limiting. The permeability of the unstirred layers (1.1 +/- 0.45 x 10(-3) cm/s) was considerably lower than that of NH3 (0.21 +/- 0.014 cm/s). The Arrhenius activation energy for NH3 permeability was 49.5 +/- 11.8 kJ/mol. No evidence for NH+4 influx over the time domain of these experiments was found.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3