Stimulated osteoclastic and suppressed osteoblastic activity in metabolic but not respiratory acidosis

Author:

Bushinsky D. A.1

Affiliation:

1. Department of Medicine, University of Rochester School of Medicine andDentistry, New York 14618.

Abstract

When bone is cultured in acidic medium produced by a reduced bicarbonate concentration ([HCO(3-)]), a model of metabolic acidosis, there is greater net calcium efflux than when the same decrement in pH is produced by an increased partial pressure of carbon dioxide (PCO2), a model of respiratory acidosis. To determine the effects of metabolic and respiratory acidosis on bone cell function we cultured neonatal mouse calvariae for 48 h under control conditions (pH approximately 7.40, PCO2 approximately 41 mmHg, [HCO(3-)] approximately 25 meq/l) or under isohydric acidic conditions simulating metabolic (pH approximately 7.09, [HCO(3-)] approximately 12) or respiratory (pH approximately 7.10, PCO2 approximately 86) acidosis and measured osteoblastic collagen synthesis and alkaline phosphatase activity and osteoclastic beta-glucuronidase activity. Collagen synthesis was inhibited by metabolic (23.2 +/- 1.3 vs. 30.3 +/- 1.0% in control) but was not altered by respiratory (32.3 +/- 0.6) acidosis. Alkaline phosphatase activity was inhibited by metabolic (402 +/- 16 vs. 471 +/- 15 nmol P.min-1.mg protein-1 in control) but not altered by respiratory (437 +/- 25) acidosis. beta-Glucuronidase activity was stimulated by metabolic (1.02 +/- 0.06 vs. 0.78 +/- 0.05 micrograms phenolphthalein released.bone-1.h-1 in control) but not altered by respiratory (0.73 +/- 0.06) acidosis. Net calcium efflux in control was increased by metabolic (783 +/- 57 vs. 20 +/- 57 nmol.bone-1.48 h-1 in control) and by respiratory (213 +/- 45) acidosis; however, calcium efflux with metabolic was greater than with respiratory acidosis.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3