Kinetics of [Ca]i decline in cardiac myocytes depend on peak [Ca]i

Author:

Bers D. M.1,Berlin J. R.1

Affiliation:

1. Department of Physiology, Loyola University School of Medicine,Maywood, Illinois 60153.

Abstract

The rate of decline of free intracellular Ca concentration ([Ca]i) is a potentially useful index of the function of Ca transport systems. However, interpretations of these results may depend on multiple Ca transport systems and interaction with intracellular Ca binding sites. We measured [Ca]i in voltage-clamped ventricular myocytes isolated from rat hearts using indo 1 fluorescence. Conditions were chosen where [Ca]i decline was expected to depend almost exclusively on the sarcoplasmic reticulum Ca pump. The half time of [Ca]i decline (t1/2) decreased as the amplitude of the intracellular Ca (Cai) transient increased. This is not the result that would be expected from a transport system where the transport rate is a linear function of free [Ca]i. In this case the time constant of [Ca]i decline (tau) should be independent of the peak value of [Ca]i. This is also true if linear buffering of Cai is included. We develop a simple but more realistic theoretical framework where Ca transport rate and Ca binding both depend on free [Ca]i with Michaelis-Menten type functions. We demonstrate that the observed decline in apparent tau with increasing peak [Ca]i is entirely expected on theoretical grounds and over a wide range of characteristics for Ca transport and binding. We conclude that one cannot draw inferences about the intrinsic Ca transport function based on tau values unless the Cai transient has a comparable size.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3