Mechanisms of pHi control and relationships between tension and pHi in human subcutaneous small arteries

Author:

Carr P.1,McKinnon W.1,Poston L.1

Affiliation:

1. Department of Medicine, United Medical and Dental School, St. Thomas' Hospital, London, United Kingdom.

Abstract

Intracellular pH (pHi) control and relationships between pHi and tension have been investigated in human subcutaneous small arteries. Isometric tension and pHi (using 2',7'-bis(carboxyethyl)- 5(6)-carboxyfluorescein) were estimated simultaneously. pHi recovery from an acute acid load was dependent on external Na+ and partially inhibited by the absence of HCO3(-) [N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solution] or by the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In an HCO3(-)-buffered physiological salt solution (PSS), pHi recovery was partially blocked by hexamethylene amiloride (HMA), an inhibitor of Na+/H+ exchange, and completely blocked by DIDS and HMA together. Intracellular Cl- depletion of arteries did not affect the rate of pHi recovery in PSS from an acid load. pHi recovery from acute alkalosis was unaffected by external Na+ removal, reduced in HEPES buffer, and abolished by removal of external Cl-. These data suggest that human small arteries maintain pHi by Na+/H+ exchange and Na(+)-dependent HCO3(-) exchange in response to an acid load, and Na(+)-independent Cl-/HCO3(-) exchange to counteract intracellular alkalosis. Norepinephrine (NE)-, endothelin-1 (ET-1)-, arginine vasopressin (AVP)-, and K(+)-induced tension did not alter pHi in PSS, but there was a small fall with angiotensin II (ANG II). In HEPES, stimulation with K+, NE, ANG II, or AVP led to a fall in pHi, but this did not occur with ET-1. It is therefore unlikely in vivo that an increase in pHi in these arteries would be involved in either tension development or growth induced by these agonists.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3