Intracellular ion activities and Cl-transport mechanisms in bullfrog corneal epithelium

Author:

Reuss L.,Reinach P.,Weinman S. A.,Grady T. P.

Abstract

Cell membrane potentials, cell membrane resistances, and intracellular ionic activities were measured in bullfrog corneal epithelium. Equivalent circuit analysis was performed by adding adenosine to the apical surface and assuming that only the apical membrane is initially affected. From single-ion substitutions in the apical bathing solution, the apical membrane was found to have a high Cl- permeability, a low K+ permeability, and an unmeasurably small Na+ permeability. Under control conditions intracellular Cl- activity (aCli) was 22 +/- 2 (SE) mM, intracellular Na+ activity (aNai) was 14 +/- 3 mM, and intracellular K+ activity (aKi) was 106 +/- 5 mM. The electrical potential differences across apical and basolateral membranes were about 50 and 67 mV, respectively, both cell negative. aCli and aKi are higher, whereas aNai is much lower than predicted for equilibrium distribution. Inasmuch as Cl- is transported from the basolateral (stromal) to the apical (tear) side, basolateral entry of this anion is uphill and apical exit is downhill. Basolateral entry is Na+ dependent, as evidenced by a fall of aCli to near-equilibrium values after basolateral Na+ removal. The electrochemical gradient for Cl- efflux across the apical membrane is large enough to account for Cl- transport by electrodiffusion only. Na+ removal from the basolateral solution causes a reversible decrease of apical membrane Cl- permeability. The results support the hypothesis that net transepithelial Cl- transport results from coupled NaCl entry (or an equivalent process) at the basolateral membrane and electrodiffusional Cl- exit at the apical membrane.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fundamentals of Epithelial Cl− Transport;Physiology in Health and Disease;2020

2. KCa3.1 in Epithelia;Studies of Epithelial Transporters and Ion Channels;2020

3. KCa3.1 in Epithelia;Ion Channels and Transporters of Epithelia in Health and Disease;2015-12-15

4. Fundamentals of Epithelial Cl− Transport;Ion Channels and Transporters of Epithelia in Health and Disease;2015-12-15

5. The effect of amiloride on bovine corneal epithelium;Acta Ophthalmologica;2009-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3