Dynamic fibroblast cytoskeletal response to subcutaneous tissue stretch ex vivo and in vivo

Author:

Langevin Helene M.,Bouffard Nicole A.,Badger Gary J.,Iatridis James C.,Howe Alan K.

Abstract

Cytoskeleton-dependent changes in cell shape are well-established factors regulating a wide range of cellular functions including signal transduction, gene expression, and matrix adhesion. Although the importance of mechanical forces on cell shape and function is well established in cultured cells, very little is known about these effects in whole tissues or in vivo. In this study we used ex vivo and in vivo models to investigate the effect of tissue stretch on mouse subcutaneous tissue fibroblast morphology. Tissue stretch ex vivo (average 25% tissue elongation from 10 min to 2 h) caused a significant time-dependent increase in fibroblast cell body perimeter and cross-sectional area (ANOVA, P < 0.01). At 2 h, mean fibroblast cell body cross-sectional area was 201% greater in stretched than in unstretched tissue. Fibroblasts in stretched tissue had larger, “sheetlike” cell bodies with shorter processes. In contrast, fibroblasts in unstretched tissue had a “dendritic” morphology with smaller, more globular cell bodies and longer processes. Tissue stretch in vivo for 30 min had effects that paralleled those ex vivo. Stretch-induced cell body expansion ex vivo was inhibited by colchicine and cytochalasin D. The dynamic, cytoskeleton-dependent responses of fibroblasts to changes in tissue length demonstrated in this study have important implications for our understanding of normal movement and posture, as well as therapies using mechanical stimulation of connective tissue including physical therapy, massage, and acupuncture.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Reference40 articles.

1. Aplin AE, Howe A, Alahari SK, and Juliano RL.Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins.Pharmacol Rev50: 197–263, 1998.

2. Aplin AEand Juliano RL.Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway.J Cell Sci112: 695–706, 1999.

3. Regulation of nucleocytoplasmic trafficking by cell adhesion receptors and the cytoskeleton

4. Adhesion-Dependent Cell Mechanosensitivity

5. Geometric Determinants of Directional Cell Motility Revealed Using Microcontact Printing

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3