Functional role of histamine receptors in the renal cortical collecting duct cells

Author:

Sudarikova Anastasia V.12ORCID,Fomin Mikhail V.3,Sultanova Regina F.1,Zhao Ying1,Perez Samantha1,Domondon Mark1,Shamatova Margarita23,Lysikova Daria V.23,Spires Denisha R.3ORCID,Ilatovskaya Daria V.3ORCID

Affiliation:

1. Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina

2. Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia

3. Department of Physiology, Augusta University, Augusta, Georgia

Abstract

Histamine is an important immunomodulator, as well as a regulator of allergic inflammation, gastric acid secretion, and neurotransmission. Although substantial histamine level has been reported in the kidney, renal pathological and physiological effects of this compound have not been clearly defined. The goal of this study was to provide insight into the role of histamine-related pathways in the kidney, with emphasis on the collecting duct (CD), a distal part of the nephron important for the regulation of blood pressure. We report that all four histamine receptors (HRs) as well as enzymes responsible for histamine metabolism and synthesis are expressed in cultured mouse mpkCCDcl4 cells, and histamine evokes a dose-dependent transient increase in intracellular Ca2+ in these cells. Furthermore, we observed a dose-dependent increase in cAMP in the CD cells in response to histamine. Short-circuit current studies aimed at measuring Na+ reabsorption via ENaC (epithelial Na+ channel) demonstrated inhibition of ENaC-mediated currents by histamine after a 4-h incubation, and single-channel patch-clamp analysis revealed similar ENaC open probability before and after acute histamine application. The long-term (4 h) effect on ENaC was corroborated in immunocytochemistry and qPCR, which showed a decrease in protein and gene expression for αENaC upon histamine treatment. In summary, our data highlight the functional importance of HRs in the CD cells and suggest potential implications of histamine in inflammation-related renal conditions. Further research is required to discern the molecular pathways downstream of HRs and assess the role of specific receptors in renal pathophysiology.

Funder

Augusta University | Medical College of Georgia, Augusta University

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3