Affiliation:
1. Department of Surgery, Veterans Affairs Medical Center, Ann Arbor,Michigan.
Abstract
Depletion of cellular ATP is associated with profound effects on the cytoskeleton, particularly disruption of microfilaments. We examined this process in bovine pulmonary artery endothelial cells by inducing differential reductions of cellular ATP using mitochondrial inhibition and variable amounts of glucose. Reduction of cellular ATP to levels < 40% of control produced discrete stages in the visible disruption of microfilaments. Using the deoxyribonuclease I assay, a reversible 11% decrease in monomeric (G) actin occurred in conjunction with microfilament disruption. Polyacrylamide gel electrophoretic (PAGE) analysis of the detergent-insoluble cytoskeleton did not reveal any differences in actin content between normal or ATP-depleted cells. Image analysis of adherent endothelial cells that had been fixed and stained with N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-phallacidin revealed that an increase of F-actin of approximately 20% occurred in cells depleted of ATP. If the cells were lysed with detergent before fixation, the increase in F-actin was lost. PAGE analysis and electron microscopy of detergent-soluble material from the cells obtained by ultracentrifugation directly demonstrated the presence of a labile pool of F-actin within the cells, which increased with ATP loss. These observations suggest that ATP may play an important role in the organization and remodeling of microfilaments within cells.
Publisher
American Physiological Society
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献