Amino acid loss during volume regulatory decrease in cultured chick heart cells

Author:

Rasmusson R. L.1,Davis D. G.1,Lieberman M.1

Affiliation:

1. Department of Cell Biology, Duke University Medical Center, Durham,North Carolina 27710.

Abstract

Mechanisms of volume regulation in hyposomotically treated cultured chick heart cell preparations were studied using optical, biochemical, and nuclear magnetic resonance methods. This approach afforded the resolution of time-dependent responses that might ordinarily be obscured by the complex morphology of intact cardiac muscle preparations. In hyposmotic solutions, cells swelled to a peak volume within 3 min and slowly regulated toward original volume (regulatory volume decrease, RVD). Upon return of the cells to isosmotic solution following hyposmotic treatment, the cells shrank to a steady-state volume that was substantially less than the initial volume in control solution. A vigorous RVD could also be elicited by hyposmotic swelling under Cl(-)-free conditions. Measurement of both inorganic cation loss via atomic absorption spectroscopy and organic solute loss via 1H-nuclear magnetic resonance and high-pressure liquid chromatographic techniques revealed that the RVD observed following exposure to hyposomotic solutions was mediated in part by a substantial loss of taurine, glutamate, aspartate, and glycine as well as loss of inorganic ions (Na+,K+). The hyposmotically activated transport of amino acids was also associated with the production of glutamate and aspartate. The volume regulatory release and production of amino acids have significant implications for the metabolic and functional integrity of cardiac cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3