Expression of myosin regulatory light-chain isoforms and regulation of phosphorylation in smooth muscle

Author:

Monical P. L.1,Owens G. K.1,Murphy R. A.1

Affiliation:

1. Department of Physiology, University of Virginia School of Medicine,Charlottesville 22908.

Abstract

Our objectives were to 1) determine how growth state and cell density affect the expression of the smooth muscle (SM) and nonmuscle (NM) isoforms of the 20-kDa myosin regulatory light chains (MLC20) in cultured rat aortic smooth muscle cells (SMC) and 2) to determine whether angiotensin II stimulates differential phosphorylation of SM and NM MLC20 isoforms in an effort to assess whether the SM and NM isoforms may subserve different cellular functions. The results demonstrated that changes in the SM MLC20 isoform content were inversely correlated with cell growth but independent of cell density. MLC20 phosphorylation levels were 20.8 +/- 2.9 and 19.4 +/- 3.7% for SM and NM isoforms, respectively, in unstimulated, substrate-attached SMC. Angiotensin II transiently elevated phosphorylation levels of both the SM and NM MLC20 isoforms to 60-70%. No differences in either the magnitude or the kinetics of phosphorylation were observed for the SM vs. NM isoforms. Forskolin, 3-isobutyl-1-methylxanthine, or isoproterenol treatment led to parallel dephosphorylation of the SM- and NM-specific isoforms followed by depolymerization of stress fibers and cell arborization. The studies provide evidence that growth arrest of cultured SMC enhances expression of cell-specific/-selective proteins characteristic of differentiated SM. However, there was no evidence for differential phosphorylation changes of SM and NM MLC20 isoforms in response to activating or relaxing agents as expected if these isoforms subserve different cellular functions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3