Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes

Author:

Dawson T. L.1,Gores G. J.1,Nieminen A. L.1,Herman B.1,Lemasters J. J.1

Affiliation:

1. Department of Cell Biology and Anatomy, School of Medicine, University of North Carolina, Chapel Hill 27599-7090.

Abstract

Cell killing, oxygen consumption, and hydroperoxide formation were determined in rat hepatocytes after glycolytic and respiratory inhibition. These conditions model the ATP depletion and reductive stress of anoxia (“chemical hypoxia”). Glycolysis was inhibited with iodoacetate, and mitochondrial electron transfer was blocked with sodium azide, cyanide, or myxothiazol. Cell killing, hydroperoxide formation, and inhibitor-insensitive oxygen consumption were greater after azide than after myxothiazol or cyanide. Desferrioxamine, an inhibitor of iron-catalyzed hydroxyl radical formation, delayed cell killing after each of the respiratory inhibitors. Anoxia also delayed cell killing during chemical hypoxia. However, during anoxic incubations, desferrioxamine did not delay the onset of cell death. These findings indicate that reactive oxygen species participate in lethal cell injury during chemical hypoxia. In isolated mitochondria, previous studies have shown that myxothiazol inhibits Q cycle-mediated ubisemiquinone formation in complex III (ubiquinol-cytochrome c oxidoreductase) and that ubisemiquinone can react with molecular oxygen to form superoxide. Decreased killing of hepatocytes with myxothiazol compared with azide suggests, therefore, that mitochondrial oxygen radical formation by complex III is involved in cell killing during reductive stress. In support of this hypothesis, myxothiazol reduced rates of cell killing and hydroperoxide formation in hepatocytes incubated with azide or cyanide. This mitochondrial mechanism for oxygen radical formation may be important in relative but not absolute hypoxia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3