Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function

Author:

Sweeney H. L.1,Bowman B. F.1,Stull J. T.1

Affiliation:

1. Department of Physiology, University of Pennsylvania School ofMedicine, Philadelphia 19104.

Abstract

The regulatory light chain of myosin (RLC) is phosphorylated in striated muscles by Ca2+/calmodulin-dependent myosin light chain kinase. Unique biochemical and cellular properties of this phosphorylation system in fast-twitch skeletal muscle maintain RLC in the phosphorylated form for a prolonged period after a brief tetanus or during low-frequency repetitive stimulation. This phosphorylation correlates with potentiation of the rate of development and maximal extent of isometric twitch tension. In skinned fibers, RLC phosphorylation increases force production at low levels of Ca2+ activation, via a leftward shift of the force-pCa relationship, and increases the rate of force development over a wide range of activation levels. In heart and slow-twitch skeletal muscle, the functional consequences of RLC phosphorylation are probably similar, and the primary physiological determinants are phosphorylation and dephosphorylation properties unique to each muscle. The mechanism for these physiological responses probably involves movement of the phosphorylated myosin cross bridges away from the thick-filament backbone. The movement of cross bridges may also contribute to the regulation of myosin interactions with actin in vertebrate smooth and invertebrate striated muscles.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3