M3 muscarinic acetylcholine receptor coupling to PLC in rat exorbital lacrimal acinar cells

Author:

Mauduit P.1,Jammes H.1,Rossignol B.1

Affiliation:

1. Laboratoire de Biochimie des Transports Cellulaires, Centre Nationalde la Recherche Scientifique, Unite de Recherche Associee 1116, UniversiteParis-Sud, Orsay, France.

Abstract

This study was designed to characterize the muscarinic acetylcholine receptor (mAChR) subtype present in rat exorbital lacrimal gland as well as its biochemical coupling. The nonselective muscarinic antagonist [N-methyl-3H]scopolamine ([3H]NMS) binds with high affinity to a homogeneous population of binding sites in both membranes [dissociation constant (Kd) = 82.3 +/- 3.2 pM] and acinar cell (Kd = 170.3 +/- 20 pM) preparations. Muscarinic antagonist inhibition of [3H]NMS binding is homogeneous with the following order of potency: atropine > or = 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) > pirenzepine > 11-([2-(diethylamino)-ethyl]-1-piperidinyl)-acetyl- 5,11-dihydro-6H-pirido[2,3-b]1,4,benzo diazepine-6-one (AFDX 116). Both the affinity of the selective antagonists 4-DAMP, pirenzepine, and AFDX 116 and Northern blot analysis of lacrimal gland mRNAs show a single mAChR population of the M3 subtype. Muscarinic agonist inhibition of [3H]NMS binding displays both high (approximately 20%)- and low-affinity sites (approximately 80%). Both the receptor occupancy and the stimulation by agonists or the inhibition by antagonists of the accumulation of [3H]inositol phosphate were examined under identical conditions with respect to tissue preparations (acinar cells) and buffer (Krebs-Ringer). Results demonstrate 1) the efficient coupling of the M3 mAChR subtype with the phosphatidylinositol (4,5))bisphosphate-specific phospholipase C activity and 2) that the efficacy of a muscarinic agonist is dependent on its structure. Lastly, comparison of the agonists affinity and potency to trigger the [3H]inositol phosphate accumulation suggests that the occupation of the high-affinity agonist binding state of the M3 mAChR was involved in the cellular response.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3