Mutation of a single amino acid converts the human water channel aquaporin 5 into an anion channel

Author:

Qin Xue1,Boron Walter F.1

Affiliation:

1. Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio

Abstract

Aquaporin 6 (AQP6) is unique among mammalian AQPs in being an anion channel with negligible water permeability. However, the point mutation Asn60Gly converts AQP6 from an anion channel into a water channel. In the present study of human AQP5, we mutated Leu51 (corresponding to residue 61 in AQP6), the side chain of which faces the central pore. We evaluated function in Xenopus oocytes by two-electrode voltage clamp, video measurements of osmotic H2O permeability ( Pf), microelectrode measurements of surface pH (pHS) to assess CO2 permeability, and surface biotinylation. We found that AQP5-L51R does not exhibit the H2O or CO2 permeability of the wild-type protein but instead has a novel p-chloromercuribenzene sulfonate (pCMBS)-sensitive current. The double mutant AQP5-L51R/C182S renders the conductance insensitive to pCMBS, demonstrating that the current is intrinsic to AQP5. AQP5-L51R has the anion permeability sequence I > NO3 ≅ NO2 > Br > Cl > HCO3 > gluconate. Of the other L51 mutants, L51T (polar uncharged) and L51V (nonpolar) retain H2O and CO2 permeability and do not exhibit anion conductance. L51D and L51E (negatively charged) have no H2O or CO2 permeability. L51K (positively charged) has an intermediate H2O and CO2 permeability and anion conductance. L51H is unusual in having a relatively low CO2 permeability and anion conductance, but a moderate Pf. Thus, positively charged mutations of L51 can convert AQP5 from a H2O/CO2 channel into an anion channel. However, the paradoxical effect of L51H is consistent with the hypothesis that CO2, in part, takes a pathway different from H2O through AQP5.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3