PDIA3/ERp57 promotes a matrix-rich secretome that stimulates fibroblast adhesion through CCN2

Author:

Hellewell Andrew L.1,Heesom Kate J.1,Jepson Mark A.2,Adams Josephine C.1ORCID

Affiliation:

1. School of Biochemistry, University of Bristol, Bristol, United Kingdom

2. Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom

Abstract

The matricellular glycoprotein thrombospondin-1 (TSP1) has complex roles in the extracellular matrix (ECM) and at cell surfaces, but relatively little is known about its intracellular associations prior to secretion. To search for novel intracellular interactions of TSP1 in situ, we carried out a biotin ligase-based TSP1 interactome screen and identified protein disulfide isomerase A3 (PDIA3/ERp57) as a novel candidate binding protein. In validation, TSP1 and PDIA3 were established to bind in vitro and to colocalize in the endoplasmic reticulum of human dermal fibroblasts (HDF). Loss of PDIA3 function, either by pharmacological inhibition in HDF or in Pdia3−/− mouse embryo fibroblasts ( Pdia3−/− MEFs), led to alterations in the composition of cell-derived extracellular matrix, involving changed abundance of fibronectin and TSP1, was correlated with reduced cell spreading, altered organization of F-actin, and reduced focal adhesions. These cellular phenotypes of Pdia3−/− MEFs were normalized by exposure to conditioned medium (WTCM) or extracellular matrix (WTECM) from wild-type (WT)-MEFs. Rescue depended on PDIA3 activity in WT-MEFs and was not prevented by immunodepletion of fibronectin. Heparin-binding proteins in WTCM were found to be necessary for rescue. Comparative quantitative tandem-mass-tag proteomics and functional assays on the heparin-binding secretomes of WT-MEFs and Pdia3−/− MEFs identified multiple ECM and growth factor proteins to be downregulated in the CM of Pdia3−/− MEFs. Of these, cell communication network 2 (CCN2) was identified to be necessary for the adhesion-promoting activity of WTCM on Pdia3−/− MEFs and to bind TSP1. Thus, PDIA3 coordinates fibroblast production of an ECM-rich, proadhesive microenvironment, with implications for PDIA3 as a translational target.

Funder

UKRI | Biotechnology and Biological Sciences Research Council

UKRI | Medical Research Council

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3