Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis

Author:

Song Yuanlin,Salinas Danieli,Nielson Dennis W.,Verkman A. S.

Abstract

Prior studies have shown that fluid secretions from airway submucosal glands in cystic fibrosis (CF) are reduced and hyperviscous, possibly contributing to the pathogenesis of CF airway disease. Because the CF transmembrane conductance regulator (CFTR) protein can transport both chloride and bicarbonate, we investigated whether gland fluid pH is abnormal in early CF, using nasal biopsies from pediatric subjects having minimal CF lung disease. Gland fluid pH, measured in freshly secreted droplets under oil stained with BCECF-dextran, was 6.57 ± 0.09 (mean ± SE) in biopsies from six CF subjects, significantly lower than 7.18 ± 0.06 in eight non-CF biopsies ( P < 0.01). To rule out the possibility that the apparent gland fluid hyperacidity in CF results from modification of fluid pH by the airway surface, a microcannulation method was used to measure pH in fluid exiting gland orifices. In pig trachea and human bronchi, gland fluid pH was reduced by up to 0.45 units by CFTR inhibitors, but was not affected by amiloride. Acid base transport in the surface epithelium of pig trachea was studied from pH changes in 300-nl fluid droplets deposited onto the oil-covered airway surface. The droplets had specified ionic composition/pH and/or contained transporter activators/inhibitors. We found evidence for CFTR-dependent bicarbonate transport by the tracheal surface epithelium as well as ATP/histamine-stimulated proton secretion, but not for sodium/proton or chloride/bicarbonate exchange. These results provide evidence for intrinsic hyperacidity in CF gland fluid secretions, which may contribute to CF airway pathology.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3