Effects of substrate and hypoxia on smooth muscle metabolism and contraction

Author:

Wendt I. R.1

Affiliation:

1. Department of Physiology, Monash University, Clayton, Victoria,Australia.

Abstract

Suprabasal heat production, oxygen consumption, and lactate production were measured, together with force, in 30-s isometric contractions of longitudinal smooth muscle from rabbit urinary bladder at 27 degrees C. Either glucose or pyruvate was provided as exogenous substrate. Under aerobic conditions with glucose as substrate, force averaged 95 mN/mm2 and heat production 121 mJ/g. Oxygen consumption (0.18 mumol/g) could account for only two-thirds of the total energy expenditure represented as heat production. The remaining one-third was accounted for by aerobic lactate production (0.36 mumol/g). When pyruvate replaced glucose as substrate, both the force developed and the total heat liberated were unchanged. Oxygen consumption, however, increased by approximately 40% (to 0.25 mumol/g) and was able to fully account for the measured heat production. The frequency of spontaneous contractions under aerobic conditions was always reduced in the presence of pyruvate. Under anaerobic conditions force was essentially unaltered, and heat production was only slightly reduced (101 mJ/g) with glucose present. Lactate production increased threefold over that under aerobic conditions. With pyruvate as substrate both force and heat production declined markedly (to less than 5% of the aerobic values). The results indicate that under aerobic conditions and with glucose as substrate, smooth muscle of rabbit urinary bladder generates about one-third of its suprabasal energy requirements through glycolysis and that glycolysis can be further accelerated under anaerobic conditions to provide sufficient energy to sustain contraction. If pyruvate replaces glucose as substrate, the metabolism shifts to being virtually all oxidative, and contraction can no longer be sustained in the absence of oxygen.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3